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CHAPTER 1

Introduction

In recent years, vortex beams carrying orbital angular momentum (OAM) have gained significant
attention due to their unique phase characteristics, including a helical wavefront, a central intensity null,
and a phase singularity. These features make OAM beams promising for various applications, such
as optical communication, rotational sensing, and particle manipulation. Consequently, researching
the generation and application of OAM beams is crucial for advancing experimental techniques and
broadening their use in practical settings.[1]

Light beams with OAM provide intriguing opportunities for studying the conservation of angular
momentum in light-matter interactions. When light carrying OAM interacts with atoms, the question
arises of how the atom’s quantized angular momentum—comprising intrinsic spin, spatial OAM, and
mechanical rotation—responds. This interaction helps to probe the quantum properties of light’s OAM,
enhancing our fundamental understanding of light-matter dynamics and enabling the development
of OAM-based applications such as quantum memories, frequency converters, and advanced sensors.[2]

The Rubidium Quantum Optics (RQO) project at the University of Bonn explores the manipulation
of single photons using a quantum-nonlinear medium composed of ultracold Rydberg atoms. Rydberg
quantum optics utilizes the strong interactions between Rydberg atoms to create a nonlinear medium that
can influence otherwise non-interacting photons.[3] In the current RQO experiment, rubidium atoms
are laser-cooled and trapped in a magneto-optical trap (MOT) and then in a large dipole trap, cooling
the atomic cloud to temperatures below 4 K. The aim is to create Rydberg superatoms—ensembles of
atoms that can collectively share a single excitation within the Rydberg blockade radius.[4] Future
experiments will investigate how Rydberg-mediated interactions between photons in the ultracold gas
alter the outgoing light mode. Currently, the setup uses Gaussian modes, but plans include probing
and collecting light in different OAM modes to observe the influence of Rydberg interactions and to
explore the potential of probing atoms with OAM beams.

To achieve these experimental goals, Spatial Light Modulators (SLMs) are crucial for generating
and detecting LG modes, allowing precise control over the phase and amplitude of light beams[5]
SLMs are useful for preparing the probe light in specific OAM states and collecting the resulting
light after interactions with the Rydberg atoms. Their ability to dynamically modify the phase and
amplitude of light makes SLMs invaluable tools for this research.
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This thesis supports these plans by focusing on the theoretical and experimental generation of
Laguerre-Gaussian (LG) modes. Chapter 2 lays the theoretical groundwork for computer-generated
holograms (CGHs) and Fourier optics, detailing the calculation methods for phase-only and amplitude-
modulated holograms, and explaining the integration of SLMs in optical systems. Chapter 3 presents the
numerical simulations of LG modes using these methods, evaluating their effectiveness in reproducing
theoretical results and comparing the different approaches. Chapter 4 details the experimental setup
used to generate LG modes, highlighting the adjustments made to optimize the system for accurate
mode production. Finally, the thesis concludes with a summary of the findings and their implications
for future OAM-based experiments within the RQO project.

By integrating advanced SLM techniques with precise experimental setups, this work contributes to
the broader goals of the RQO project, enhancing the understanding of light-matter interactions and
paving the way for novel OAM-based quantum applications.
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CHAPTER 2

Theoretical Foundations of CGHs and
Fourier Optics

Computer-Generated Holograms (CGHs) have become a key tool in the generation and manipulation of
complex optical beams, including those with optical vortices (OV) and Laguerre-Gaussian (LG) modes.
These beams, characterized by unique wavefront singularities, regions of zero intensity, and orbital
angular momentum, have garnered significant attention due to their potential in both fundamental
physics and practical applications such as optical trapping, precise measurement, and information
processing. Among the various techniques available for generating OV beams, the holographic
approach is particularly efficient, leveraging interference patterns to shape incident light into desired
modes. This section delves into the theoretical underpinnings of CGHs tailored for Laguerre-Gaussian
modes, focusing on phase and amplitude modulation principles and the foundational aspects of Fourier
optics that guide their design and implementation.[6]
For further information about the beam profiles of Laguerre-Gaussian modes and the principles and
operations of Spatial Light Modulators (SLMs), the reader is advised to consult the Bachelor thesis of
Kimberly Kurzbach [7], where these topics are explained in detail.

2.1 Calculation of Computer-Generated Holograms for
Laguerre-Gaussian Modes

In the following sections, we will discuss different approaches to calculating holograms for LG modes.
First, we explore phase-only holograms, which manipulate only the phase of the light to generate the
desired modes. Next, we examine amplitude-modulated holograms, which involve both phase and
amplitude modulation. For these, two methods are presented: an exact approach that provides high
fidelity in mode generation and a simplified approach that balances performance and computational
complexity.

2.1.1 Phase-Only Holograms

To generate LG beams, it is necessary to determine the phase patterns based on the electric field
amplitude of the desired LG beam under the paraxial and scalar wave approximations. Assuming the
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LG beam propagates in the z-direction and is focused at z = 0, the electric field amplitude 𝑢𝑝
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𝑢
𝑝

𝑙
(𝑟, 𝜃, 𝑧) = (−1) 𝑝

√︄
2
𝜋

𝑝!
(𝑝 + |𝑙 |)!

(√
2 𝑟
𝑤𝑧

) |𝑙 |
𝑤𝑧

exp
(
− 𝑟

𝑤𝑧

)2
𝐿
|𝑙 |
𝑝

(
2𝑟2

𝑤
2
𝑧

)
× exp (−𝑖𝑙𝜃) exp

(
−𝑖 𝑟

2

𝑤
2
𝑧

𝑧/𝑧𝑅

)
exp

(
𝑖 (2𝑝 + |𝑙 | + 1) tan−1 (

𝑧/𝑧𝑅
) )

(2.1)

where 𝐿
(
𝑝 |𝑙 |) (𝑥) is a generalized Laguerre polynomial and 𝑧𝑅 and 𝑤𝑧 =

√︃
𝑧

2 + 𝑧
2
𝑅/(𝑘𝑧𝑅) represent

the Rayleigh length and beam radius at position z, respectively. 𝑘 is the wavenumber of the incident
light. [8]

The phase structure of the LG beam is characterized by the azimuthal term exp (−𝑖𝑙𝜃) and 𝐿
|𝑙 |
𝑝

(
2𝑟2

𝑤
2
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)
.

Given that the Laguerre polynomial 𝐿 (
𝑝 |𝑙 |) (𝑥) changes its sign at each 𝑥𝑖 , this results in a helical phase

pattern Φ𝐿 (𝑟, 𝜙) characterized by phase discontinuities at each 𝑟𝑖 . This pattern is used to generate the
LG𝑙

𝑝 beam by modulating an incident plane wave. The phase modulation can be expressed as

Φ𝐿 (𝑟, 𝜙) = −𝑙𝜙 + 𝜋𝜃

(
−𝐿 |𝑙 |

𝑝

(
2𝑟2

𝑤
2
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(2.2)

where 𝜃 (𝑥) represents the unit step function. In use with an SLM, the phase pattern is constricted
to the interval 0 and 2𝜋. [9].
However, Output beams from the LCOS-SLM often contain unmodulated components that negatively
impact beam quality. To separate these unwanted parts from the desired beam, a blazed phase grating
pattern Φ𝑔 (𝑥, 𝑦) of the form

Φ𝑔 (𝑥, 𝑦) = Mod
(
2𝜋𝑥
Λ

, 2𝜋
)

(2.3)

is added to the phase structure where Λ is the grating period, which optimizes how efficiently the
light is diffracted.[5]
In combination of the phase pattern Φ𝐿 (𝑟, 𝜙) and the blazed phase grating pattern Φ𝑔 (𝑥, 𝑦) holograms
like Image 1 can be obtained.

2.1.2 Amplitude Modulated Holograms

To accurately generate arbitrary beams, it’s essential to control both the phase and amplitude of the
light. Thus we will now examine the approaches presented by Bolduc et al.[10], which demonstrate
effective methods for achieving this simultaneous control.
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Exact Calculation Method

To encode both amplitude and phase on a phase-only hologram, we define the desired output field as

𝐸 (r⊥; 𝑧0) = 𝐴(r⊥, 𝑧0)𝑒
𝑖Φ(r⊥,𝑧0 ) , (2.4)

where 𝐴 represents the amplitude and Φ is the phase at a given plane. This approach allows us to
control the light’s behavior by adjusting its shape and wavefront.
The imprinted phase profile on the hologram is expressed as

Ψ(𝑚, 𝑛) = 𝑀 (𝑚, 𝑛)Mod(𝐹 (𝑚, 𝑛) + 2𝜋𝑚/Λ, 2𝜋), (2.5)

where 𝑀 modulates the amplitude, 𝐹 defines the phase information of the desired optical field and
𝑚 and 𝑛 are the pixel coordinates. Analogous to Section 2.1.1 Λ represents the grating period. In this
case, to generate LG modes, 𝐹 is equal to Φ𝐿 as defined in Equation 2.2.
Once the incident plane wave passes through the hologram, it acquires the encoded phase pattern and
a spatial filter is then used to isolate the first diffraction order, allowing only the desired optical field
components to propagate. The resulting field can be expressed as

𝑇1(𝑚, 𝑛) = −sinc(𝜋𝑀 − 𝜋)𝑒𝑖 (𝐹−𝜋𝑀 )
. (2.6)

This shows shows that the phase 𝜋𝑀 introduced by amplitude modulation is corrected by subtracting
it in the encoded phase function 𝐹.
To ensure that the output field matches the desired target field exactly, the functions 𝑀 and 𝐹 are set to

𝑀 = 1 − 1
𝜋

sinc−1(𝐴), and 𝐹 = Φ − 𝜋𝑀. (2.7)

This exact modulation method allows independent control of the amplitude and phase, ensuring
high fidelity in the generation of complex optical modes.
While the exact method involving the inverse sinc function provides precise control over amplitude
and phase, it poses significant practical challenges as calculating the inverse sinc function for each
pixel on the hologram is computationally intensive and time-consuming. This complexity can make
the approach impractical when working with high-resolution holograms or when quick results are
essential.

Simplified Calculation Method

To address these limitations, a more straightforward and computationally efficient approach can be
employed, which avoids the heavy calculations required by the exact method. This simplified technique
builds on the earlier work of Davis et al.[11], where the modulation functions are set as 𝑀 = 𝐴

and 𝐹 = Φ. In this scheme, the optical field after passing through the spatial filter is approximately
described by:
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sinc(𝜋𝐴 − 1) exp (𝑖(Φ + 𝜋𝐴)) . (2.8)

Although this method does not perfectly reproduce the desired amplitude, it still provides a generated
amplitude profile that closely resembles the target. The deviation between the generated and desired
amplitudes is minor, with the maximum difference being less than 0.161:

|sinc(𝜋𝐴 − 1) − 𝐴| < 0.161. (2.9)

This level of discrepancy is often acceptable, especially when compared to the more problematic
alteration in the phase profile caused by the additional term 𝜋𝐴.

To address the extra phase term introduced in the simplified method proposed, a refinement of the
phase encoding function can be implemented:

𝐹 = Φ − 𝜋𝐴. (2.10)

This adjustment reduces the unwanted phase shift that often affects the beam’s overall quality
more significantly than amplitude discrepancies. Although this refinement does not fully correct the
amplitude deviation, it significantly improves the accuracy of the generated phase profile, aligning it
closer to the desired optical field. The approach provides a straightforward and efficient solution when
exact replication of the optical field is not required, balancing computational simplicity with enhanced
fidelity.

2.2 Fourier Optics Principles
Fourier Optics provides a foundational understanding of light propagation through optical systems,
focusing on how wavefronts are transformed by lenses, apertures, and other elements. By applying
Fourier transforms, this approach offers essential insights into diffraction and interference phenomena,
forming the basis for the simulations and analyses carried out in this work. This section begins
by examining the fundamental theory of diffraction, followed by the integration of Spatial Light
Modulators in optical systems, and concludes with the application of Discrete Fourier Transform for
intensity calculations.

2.2.1 Diffraction Phenomena in Fourier Optics

The diffraction of light through apertures can be described using the scalar theory of diffraction,
particularly relevant for small angles and homogeneous liquid crystal modulators like the SLM. The
Helmholtz equation, derived from the wave equation, serves as the foundation for analyzing light
propagation and can be expressed as:

(∇2 + 𝑘
2)𝑈 (r) = 0, (2.11)

where 𝑘 = 2𝜋
𝜆

is the wave number, and 𝑈 (r) represents the complex amplitude of the light wave.
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This equation is essential for understanding how light behaves under different conditions, especially
when passing through optical elements like lenses and apertures.[12]

Huygens-Fresnel Principle

The Huygens-Fresnel principle explains wave propagation by treating each point on a wavefront as
a source of secondary spherical wavelets. These wavelets constructively and destructively interfere
to form the resultant wavefront, providing a qualitative explanation of reflection, refraction, and
diffraction.[13]

To quantitatively describe diffraction, Fresnel refined the principle by introducing wave coherence,
phase considerations, and an obliquity factor 𝜓(𝜃), accounting for directional effects. This adjustment
allows the complex amplitude at an observation point to be modeled as a superposition of contributions
from all points on the wavefront.

𝑈 (𝑃𝑂) =
1
𝑖𝜆

∬
𝑆

𝑈 (𝑃𝐴)
𝑒
𝑖𝑘𝑟𝑂𝐴

𝑟𝑂𝐴

𝜓(𝜃) 𝑑𝑠, (2.12)

where 𝑟𝑂𝐴 is the distance from the aperture point 𝑃𝐴 to the observation point 𝑃𝑂. This equation
serves as the mathematical foundation for diffraction analysis.[14]

Fresnel and Fraunhofer Approximations

The Fresnel approximation simplifies the general diffraction integral by assuming small diffraction
angles (paraxial approximation). By approximating the distance term 𝑟𝑂𝐴 and factoring out exponential
terms, the Fresnel diffraction integral becomes

𝑈 (𝑥, 𝑦) = 𝑒
𝑖𝑘𝑧 𝑒

𝑖 𝑘
2𝑧 (𝑥

2+𝑦2 )

𝑖𝜆𝑧

∬ ∞

−∞
𝑈 (𝜉, 𝜂)𝑒𝑖

𝑘
2𝑧 ( 𝜉

2+𝜂2 )
𝑒
−𝑖 2𝜋

𝜆𝑧
(𝑥 𝜉+𝑦𝜂)

𝑑𝜉𝑑𝜂. (2.13)

This integral is effectively a Fourier transform evaluated at spatial frequencies 𝑓𝑥 = 𝑥
𝜆𝑧

and 𝑓𝑦 =
𝑦

𝜆𝑧
,

describing the wave field near the aperture (near-field or Fresnel region).
When the observation point is far enough from the aperture (satisfying the condition 𝑧 ≫ 𝑘 ( 𝜉 2+𝜂2 )max

2 ),
the Fraunhofer approximation applies, further simplifying the expression to:[12]

𝑈 (𝑥, 𝑦) = 𝑒
𝑖𝑘𝑧 𝑒

𝑖 𝑘
2𝑧 (𝑥

2+𝑦2 )

𝑖𝜆𝑧

∬ ∞

−∞
𝑈 (𝜉, 𝜂)𝑒−𝑖

2𝜋
𝜆𝑧

(𝑥 𝜉+𝑦𝜂)
𝑑𝜉𝑑𝜂. (2.14)

Fresnel Approximation in Simulations

The validity of the Fresnel approximation is determined by the Fresnel number:

𝑁𝐹 =
𝐷

2

𝜆𝐿
, (2.15)

where 𝐷 is the aperture size, 𝜆 is the wavelength, and 𝐿 is the distance to the observation point.
For 𝑁𝐹 ≥ 1, the Fresnel approximation holds, which is the case in our experimental setup. This
approximation is suitable for simulations as it captures the essential diffraction behavior without the
need for the more complex far-field assumptions.[12]
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2.2.2 SLM Integration in Optical Systems
Liquid Crystal on Silicon Spatial Light Modulators (LCOS-SLM) are devices that modulate light by
altering the phase of an incoming beam. They consist of a layer of birefringent liquid crystals atop a
reflective surface, divided into an array of pixels. Each pixel’s refractive index is controlled by an
applied voltage, allowing the phase shift across the surface to vary between 0 and 2𝜋. The SLM used
in this thesis has 792 × 600 pixels, each measuring 12.5 𝜇𝑚 on a side.[15]

When a phase hologram is displayed on the SLM, it modulates the incoming light such that the
desired image is formed in the focal plane of a lens placed behind the SLM. The formation of this
image involves the optical transformation properties of the lens, which acts as a Fourier transformer,
converting the modulated light into a specific intensity pattern at the focal plane. This transformation
is essential for understanding the light distribution and intensity resulting from the applied phase
holograms.[12]

A key aspect of this optical setup is the lens’s ability to perform a two-dimensional Fourier transform,
which is integral to the generation of the desired intensity pattern. The lens, in conjunction with the
SLM, transforms the modulated light into a specific image at its focal plane. The wave field before and
after the lens, as well as at the focal plane, are represented as 𝑈lens(𝑢, 𝑣), 𝑈

′
lens(𝑢, 𝑣), and 𝑈 𝑓 (𝑥, 𝑦),

respectively. Using the Fresnel approximation, the complex field amplitude 𝑈 𝑓 (𝑥, 𝑦) at the lens’s
focal plane can be described in three steps [12]:

1. Fresnel Diffraction Integral: The relationship between the field after the lens and the field in
the focal plane is given by the Fresnel diffraction integral:

𝑈 𝑓 (𝑥, 𝑦) =
𝑒
𝑖𝑘𝑧

𝑖𝜆 𝑓
𝑒
𝑖 𝑘

2 𝑓 (𝑥
2+𝑦2 )

∬ ∞

−∞
𝑈

′
lens(𝑢, 𝑣)𝑒

𝑖 𝑘
2 𝑓 (𝑢

2+𝑣2 )
𝑒
−𝑖 2𝜋

𝜆 𝑓
(𝑥𝑢+𝑦𝑣)

𝑑𝑢𝑑𝑣. (2.16)

2. Lens Transformation Function: The transmission through the lens modifies the field as:

𝑈
′
lens(𝑢, 𝑣) = 𝑒

−𝑖 𝑘
2 𝑓 (𝑢

2+𝑣2 )
𝑈lens(𝑢, 𝑣), (2.17)

which simplifies the diffraction integral to a Fourier transform:

𝑈 𝑓 (𝑥, 𝑦) =
𝑒
𝑖𝑘 𝑓

𝑖𝜆 𝑓
𝑒
𝑖 𝑘

2 𝑓 (𝑥
2+𝑦2 )FT{𝑈lens(𝑢, 𝑣)}( 𝑓𝑥 , 𝑓𝑦), (2.18)

where 𝑓𝑥 = 𝑥/𝜆 𝑓 and 𝑓𝑦 = 𝑦/𝜆 𝑓 .

3. Free Space Propagation: The propagation of the wave field from the SLM to the lens can be
expressed in terms of Fourier transforms [12]:

FT{𝑈lens( 𝑓𝑥 , 𝑓𝑦)} = 𝑒
−𝑖 𝜋𝜆𝑑 ( 𝑓 2

𝑥+ 𝑓
2
𝑦 )FT{𝑈SLM( 𝑓𝑥 , 𝑓𝑦)}, (2.19)

with the distance 𝑑 and the corresponding phase shift due to free-space propagation.

Combining these relations, the complete propagation from the SLM to the focal plane is given by
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𝑈 (𝑥, 𝑦) = 𝑒
𝑖 𝑘

2 𝑓 (1−
𝑑
𝑓
) (𝑥2+𝑦2 )

𝑖𝜆 𝑓

∬ ∞

−∞
𝑈SLM(𝜉, 𝜂)𝑒−𝑖

2𝜋
𝜆 𝑓

(𝑥 𝜉+𝑦𝜂)
𝑑𝜉𝑑𝜂. (2.20)

=
𝑒
𝑖 𝑘

2 𝑓 (1−
𝑑
𝑓
) (𝑥2+𝑦2 )

𝑖𝜆 𝑓
FT{𝑈SLM( 𝑓𝑥 , 𝑓𝑦)} (2.21)

The intensity 𝐼 (𝑥, 𝑦) of the electromagnetic field at the focal plane, which is of primary interest in
this setup, is then proportional to the squared magnitude of the Fourier transform of the SLM’s output:

𝐼 (𝑥, 𝑦) = |𝑈 𝑓 (𝑥, 𝑦) |
2 ∝

��FT{𝑈SLM(𝜉, 𝜂)}
��2
𝑓𝑥=𝑥/𝜆 𝑓 , 𝑓𝑦=𝑦/𝜆 𝑓

, (2.22)

highlighting the lens’s role as a Fourier lens, effectively producing an image of the far-field diffraction
pattern.[16]

2.2.3 Intensity Computation Using Discrete Fourier Transform

Building on the principles of light modulation and Fourier transformation introduced in the previous
section, this part delves into the specific calculation of intensity patterns produced by the SLM. When
the SLM displays a phase hologram, it modulates the incoming light, and the resulting wave field at
the focal plane of a lens is determined by a series of transformations that can be effectively described
using the Discrete Fourier Transform (DFT).

The optical field generated by the SLM, denoted as 𝑈SLM, consists of the incoming Gaussian beam
𝑈in, the phase modulation 𝑒

𝑖𝜙(𝑛,𝑚) , and the pixelated aperture function of the SLM. This can be
mathematically expressed as[17]:

𝑈SLM = 𝑈in · 𝑒
𝑖𝜙(𝑛,𝑚) · rect

(
𝑥

Δ𝑥
− 𝑛 −

𝑁𝑥 − 1
2

)
· rect

(
𝑦

Δ𝑦
− 𝑚 −

𝑁𝑦 − 1
2

)
,

where:

• Δ𝑥 and Δ𝑦 are the pixel sizes.

• 𝑁𝑥 and 𝑁𝑦 are the number of pixels in the x and y directions.

• 𝑛 and 𝑚 are indices corresponding to the pixel positions.

The Fourier transform of the rectangular aperture functions results in sinc functions, with spatial
shifts inducing corresponding phase shifts in the frequency domain:

FT
[
rect

(
𝑥

Δ𝑥
− 𝑛 −

𝑁𝑥 − 1
2

)]
= Δ𝑥 · sinc(Δ𝑥 · 𝑓𝑥) · 𝑒

−𝑖2𝜋 𝑓𝑥 (𝑛+
𝑁𝑥
2 )Δ𝑥

.

Combining these transforms with the phase modulation of the SLM, the total Fourier transform of
𝑈SLM is:
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FT{𝑈SLM} = Δ𝑥Δ𝑦 · sinc(Δ𝑥 · 𝑓𝑥) · sinc(Δ𝑦 · 𝑓𝑦) · 𝑒
−𝑖 𝜋 ( 𝑓𝑥𝑁𝑥Δ𝑥+ 𝑓𝑦𝑁𝑦Δ𝑦) ·DFT[𝑒𝑖𝜙]

(
𝑥

𝐿𝑥𝑁𝑥

,
𝑦

𝐿𝑦𝑁𝑦

)
,

where the DFT of the phase modulation term is:

DFT[𝐴] (𝑘, 𝑙) =
𝑀−1∑︁
𝑚=0

𝑁−1∑︁
𝑛=0

𝐴(𝑚, 𝑛)𝑒−𝑖2𝜋(
𝑘𝑚
𝑀

+ 𝑙𝑛
𝑁 ) .

This expression emphasizes the interplay between the phase modulation of the SLM and the system’s
optical properties, shaping the observed intensity pattern at the lens’s focal plane. The pixelated
structure of the SLM, combined with the Fourier transforming capabilities of the lens, enables fine
control over the light distribution, underscoring the effectiveness of Fourier optics in manipulating
optical fields and tailoring beam shapes.[12]
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CHAPTER 3

Numerical Simulations of Laguerre-Gaussian
Mode Generation

This chapter outlines the numerical simulations conducted to model the generation of Laguerre-
Gaussian modes using various phase and amplitude modulation methods. The simulations were
performed using Python and focused on replicating the theoretical predictions of beam shaping with
phase-only and amplitude-modulated holograms. Detailed descriptions of the simulation setup, the
algorithms used, and the resulting beam profiles are provided. These simulations serve as a critical
step in validating the experimental results and understanding the effectiveness of different hologram
calculation methods.

3.1 Implementation of Simulation Methods in Python
The numerical simulations of Laguerre-Gaussian (LG) modes were implemented using Python, utilizing
libraries such as NumPy for numerical operations, SciPy for special functions and optimization, and
Matplotlib for visualizing results. The primary objective was to simulate the generation of LG modes
using various phase mask calculation methods, as outlined in the theoretical section.

Simulation Approach:

1. Beam Initialization and Grid Setup: The simulation begins by defining the spatial grid for
the incoming Gaussian beam and the phase masks. The beam is initialized with parameters
such as beam waist and wavelength, and the simulation grid is set up to match the resolution of
the SLM (792 × 600 pixels).

2. Phase and Amplitude Modulation Methods: Three modulation methods were implemented:
Phase-Only, Exact Amplitude Modulation, and Simplified Amplitude Modulation, each
corresponding to the theoretical methods discussed in Section 2.1. The Phase-Only method alters
only the phase, while the Exact and Simplified methods modulate both phase and amplitude,
with the latter offering a computationally simpler approximation.

3. Fourier Transform and Fresnel Diffraction: The modulated beam undergoes a Discrete
Fourier Transform (DFT) to simulate its propagation through the optical system, utilizing the
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Fresnel approximation as outlined in Section 2.2.3. The DFT accounts for the pixelated nature
of the SLM, applying sinc functions to model the diffraction effects caused by the pixel grid.

4. Intensity Calculation: The intensity patterns of the resulting beam are computed from the
complex amplitude distributions in the focal plane of a lens, which acts as a Fourier transformer.
These patterns are compared with theoretical expectations to evaluate the quality of the generated
LG modes.

5. Visualization and Analysis: The results are visualized by plotting the intensity patterns and
comparing them against theoretical Laguerre-Gaussian distributions. This includes identifying
and analyzing diffraction peaks to ensure accurate mode generation.

The code’s structure reflects the complexity of each modulation method, with the exact amplitude
modulation providing the highest fidelity at the cost of computational intensity. Further analysis of
the simulation results, including mode fitting and waist measurements, provides insights into the
performance and accuracy of these approaches.

3.2 Results from Laguerre-Gaussian Mode Simulations
This section presents the results obtained from the numerical simulations of Laguerre-Gaussian mode
generation using the three different phase mask calculation methods: Phase-Only, Exact Amplitude
Modulation, and Simplified Amplitude Modulation. Each method’s simulated intensity patterns and
the corresponding analyses are discussed, highlighting the differences in mode purity, alignment with
theoretical expectations, and computational efficiency. These results provide a detailed assessment of
how each method performs in replicating the desired optical fields, emphasizing their strengths and
limitations.

3.2.1 Phase-Only Method
The Phase-Only Method was evaluated for its ability to generate higher-order Laguerre-Gaussian (LG)
modes using an SLM. This method focuses on applying a phase modulation to the incoming Gaussian
beam while keeping the amplitude modulation minimal, aiming to replicate the desired LG modes
effectively.

Waist Ratio Optimization

To determine the optimal waist ratio between the incoming Gaussian beam (𝑤0) and the waist parameter
(𝑤) used for calculating the phase hologram, different ratios were tested. As shown in Figure 3.1,
the best results were achieved with a ratio of 𝑤/𝑤0 = 0.45, yielding the highest mean 𝑅

2 value of
approximately 0.68. The plot indicates that the waist ratio significantly impacts the fidelity of the
generated modes, with deviations leading to poorer quality reconstructions.

Generated Modes

The LG modes generated with the optimized parameters (𝑤0 = 40, 𝑤 = 18) are displayed in Figure 3.2.
The simulations show varying success across different modes; some modes closely resemble the
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Figure 3.1: 𝑅2 Values for Different Phasemask Waists - Phase-Only Mode. The optimal waist of 45 pixels
corresponds to a ratio of approximately 0.68, which differs from the simulation results.

theoretical expectations, while others display considerable deviations. This variability highlights that
the Phase-Only Method’s performance is highly mode-dependent, particularly for higher-order modes.

Fitted Waist Analysis

Figure 3.3 presents the fitted waist values in the x- and y-directions for each generated mode,
demonstrating consistency in waist measurements across both axes. However, slight variations were
observed between modes, with a mean waist of approximately 7.00 × 10−8 m and minimal variance
(∼ 1.19 × 10−16). These findings suggest that the generated beam shapes are reasonably symmetrical,
aligning well with the expected characteristics of LG modes.

𝑹2 Value Distribution

The distribution of 𝑅2 values across different modes, as depicted in Figure 3.4, shows significant
variability, echoing the observations made from the visual mode generation results. With an average
𝑅

2 value of 0.68, the method demonstrates moderate success, though mode-specific performance
varies significantly.

Mode Purity Analysis

To better understand the method’s limitations, mode purities were assessed by comparing 𝑅
2 values

for different LG modes across various waist ratios (Figures 3.5 and 3.6). The results reveal a consistent
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Figure 3.2: Simulated First Order Diffraction Patterns for Various LG Modes using Phase-Only Method.

pattern across modes, with optimal waist ratios differing slightly between modes, indicating that each
mode requires specific tuning for best results.

Overall, the Phase-Only Method proved effective for generating LG modes, though its success is
highly sensitive to both the mode parameters and the choice of waist ratio. Further adjustments and
optimizations, particularly in mode-specific settings, could enhance the method’s performance.

3.2.2 Comparison of Amplitude Modulation Methods

The performance of the exact and simplified amplitude modulation methods was evaluated using
simulations, focusing on the fidelity of generated Laguerre-Gaussian (LG) modes. The primary goal
was to determine the optimal waist ratio 𝑤/𝑤0 that maximizes the mode purity, characterized by the
𝑅

2 values.
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Figure 3.3: Waist Simulations for Different LG Modes - Phase-Only Method.

Figure 3.4: 𝑅2 Values for Different Simulated Modes - Phase-Only Method. The average .

Optimized Waist Ratio

Figure 3.7 shows the mean 𝑅
2 values for different waist ratios for both the exact and simplified methods.

The best mean 𝑅
2 is observed at a waist ratio of approximately 0.1, corresponding to 𝑤0 = 280 pixels

and 𝑤 = 30 pixels. It is noteworthy that the mean 𝑅
2 values for both methods remain significantly

higher compared to the phase-only method, with values approaching 1. However, for larger waist
ratios, the 𝑅

2 values decrease, which may be attributed to the resolution limits in the Fourier plane as
the effective image size decreases with increasing 𝑤.
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Figure 3.5: Mode Purity for Different 𝑙 Values - Phase-Only Method. Variations in the optimal waist ratio for
different modes are observed.

Simulation of All LG Modes

The optimized parameters were used to generate all LG modes, as shown in Figure 3.8 and Figure
3.9. Both methods successfully produce LG modes that closely resemble theoretical predictions,
demonstrating high fidelity with minimal visual discrepancies.

Waist Fitting Analysis

Figures 3.10 and 3.11 present the fitted waist values in the 𝑥 and 𝑦 directions for the exact and
simplified methods, respectively. The exact method shows a slightly better alignment between the 𝑥-
and 𝑦-waists, with mean values of 4.7008× 10−8 m (variance 2.517× 10−20 m2) and 4.7013× 10−8 m
(variance 4.144 × 10−20 m2). The simplified method has mean values of 4.6864 × 10−8 m (variance
2.746×10−19 m2) and 4.6929×10−8 m (variance 2.780×10−19 m2), showing slightly higher variances
but still maintaining overall good consistency.

𝑹2 Analysis of Individual Modes

Figures 3.12 and 3.13 display the 𝑅
2 values for each mode. Both methods yield 𝑅

2 values above
0.975 for all modes, with mean 𝑅

2 values of 0.9933 for the exact method and 0.9921 for the simplified
method. These results confirm that the exact method only slightly outperforms the simplified method,
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Figure 3.6: Mode Purity for Different 𝑝 Values - Phase-Only Method.

emphasizing that the simplified approach provides almost equivalent fidelity with less computational
effort.

Mode Purity Analysis

The mode purity, evaluated as the 𝑅
2 across various waist ratios and modes, reveals consistent patterns

across both methods, as depicted in Figures 3.14 and 3.15. While both methods show the highest
purity at the optimal waist ratio, the fidelity of the exact method declines more rapidly as the waist
ratio increases, potentially due to the inherent limitations in the approximation of the inverse sinc
function used in the exact method.

In conclusion, both the exact and simplified amplitude modulation methods provide high-quality
LG modes, with the exact method showing slightly superior performance in terms of consistency
and fidelity. However, the simplified method remains an efficient alternative with nearly comparable
results, making it suitable for applications where computational simplicity is preferred.

3.3 Discussion and Limitations

The evaluation of the numerical simulations for generating Laguerre-Gaussian (LG) modes using
different modulation techniques on Spatial Light Modulators (SLMs) highlighted several key findings
and challenges. The three tested methods—phase-only modulation, exact amplitude modulation,
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Figure 3.7: Mean 𝑅
2 values for different waist ratios. Optimal ratio found at 𝑤0 = 280 and 𝑤 = 30.

and simplified amplitude modulation—each showed varying levels of accuracy in reproducing the
theoretical LG modes.

The amplitude modulation methods, both exact and simplified, showed significantly better
performance compared to the phase-only modulation approach. The exact amplitude modulation
method, in particular, achieved the highest 𝑅2 values, indicating a closer match to the theoretical
profiles. However, this method relies on more complex calculations, especially due to the inverse
sinc approximation, which may introduce slight inaccuracies and increases computational demand.
Despite these challenges, the exact method consistently showed a high degree of fidelity across all
tested modes.

The simplified amplitude modulation method provided almost comparable results to the exact
approach with a slightly lower mean 𝑅

2 value but maintained computational simplicity, making it an
attractive alternative. However, minor discrepancies, especially for larger modes and higher waist
ratios, were observed. This suggests that while the simplified method is practical, it may not fully
capture the nuances required for precise mode generation at all conditions.

A notable limitation observed in all methods is related to the resolution constraints inherent in the
numerical simulations. As the waist of the LG modes increases, the corresponding image in the Fourier
plane becomes smaller, limiting the effective resolution and potentially degrading the 𝑅

2 values.
Enhancing resolution could mitigate this issue but would require significantly more computational
resources, which might not be feasible in real-time or resource-limited settings.

It is also important to acknowledge that these simulations were conducted under idealized conditions.
Real-world imperfections, such as noise, optical aberrations, or SLM non-linearities, were not accounted
for and could affect the actual performance of these methods. Additionally, the approximations used,
especially in the exact amplitude method, represent a limitation in achieving truly "exact" results.

In conclusion, while the amplitude modulation methods provide a substantial improvement over
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phase-only modulation in numerical simulations, each approach has its trade-offs. The exact method
offers the highest accuracy at the cost of complexity, while the simplified method balances performance
and practicality.
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Figure 3.8: Simulated first-order diffraction patterns of various LG modes using the exact amplitude modulation
method with optimized waist 𝑤 = 30 pixels.
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Figure 3.9: Simulated first-order diffraction patterns of various LG modes using the simplified amplitude
modulation method with optimized waist 𝑤 = 30 pixels.

Figure 3.10: Fitted waists in 𝑥 and 𝑦 directions for the exact amplitude modulation method.
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Figure 3.11: Fitted waists in 𝑥 and 𝑦 directions for the simplified amplitude modulation method.

Figure 3.12: 𝑅2 values for different LG modes using the exact amplitude modulation method.
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Figure 3.13: 𝑅2 values for different LG modes using the simplified amplitude modulation method.

Figure 3.14: Mode purity for different LG modes using the exact amplitude modulation method.
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Figure 3.15: Mode purity for different LG modes using the simplified amplitude modulation method.
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CHAPTER 4

Experimental Generation of
Laguerre-Gaussian Modes

This chapter presents the experimental setup and methods used to generate Laguerre-Gaussian (LG)
modes. Following the theoretical background and numerical simulations, the focus shifts to the
practical implementation of these modes using a Spatial Light Modulator (SLM). The experimental
setup is designed to accurately modulate the phase of an incoming laser beam to create the desired LG
modes, while adjustments in the optical components ensure optimal beam quality. The results provide
a comparison between simulated and experimentally generated modes, highlighting the practical
challenges and achievements in the field.

4.1 Experimental Setup
The experimental setup used in this thesis is primarily based on the work done by Kimberly Kurzbach[7],
with specific modifications to improve the imaging of the resulting modes. The light source is a 780
nm extended cavity diode laser[18], which is fiber-coupled to clean the beam shape and then reflected
off a Liquid Crystal on Silicon Spatial Light Modulator (LCOS-SLM) before being focused onto a
camera. A schematic of the setup is shown in Figure , and the key components are described below.

The laser is equipped with an optical isolator to protect it from back reflections that could potentially
cause damage. Neutral density (ND) filters are used to adjust the intensity of the laser beam before it
is coupled into a fiber, which avoids interference effects near the camera. A half-wave plate (HWP) is
used to rotate the polarization of the beam, aligning it with the LC layer of the SLM. The polarization
is further checked using a polarizing beam splitter (PBS), ensuring that almost 98% of the light is
horizontally polarized before reaching the SLM.

The beam is then expanded using a telescope consisting of two lenses to match the size of the
effective area of the SLM. This setup ensures the laser beam properly interacts with the SLM’s surface
to spatially modulate its phase according to the displayed holograms. An angle of incidence of 𝜃 ≤ 5◦

is maintained to minimize distortions, as larger angles would increase the effective pixel size and
distort the resulting image.

After modulation by the SLM, the beam passes through a second telescope designed to perform a
Fourier transformation of the modulated wavefront. This telescope, which consists of a convex and a
concave lens, was modified in this work to achieve better magnification. The original second lens, with
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a focal length of 𝑓 = −50 mm, was replaced by an 𝑓 = −100 mm lens, increasing the image size on
the camera. Due to this change, the lenses were positioned approximately 8 cm apart, and the resulting
focal plane was calculated to be about 28 cm from the first lens using a Gaussian beam calculator. The
camera was positioned at this location to accurately capture the Fourier-transformed image.

The camera used in this setup is the LaserCam HR II from Coherent, which offers a resolution of
1280×1024 pixels and a pixel size of 6.5×6.5 𝜇m, providing higher image quality than the previously
used camera.[19]

For a more comprehensive understanding of the original setup, including detailed component
specifications, readers are referred to the bachelor thesis of Kimberly Kurzbach[7].

4.2 Results from Laguerre-Gaussian Mode Generation
In this section, the results of experimentally generating Laguerre-Gaussian (LG) modes using the
experimental setup described in Section 4.1 are presented. The experiments focused on generating
LG modes with varying azimuthal (𝑙) and radial (𝑝) indices using both phase-only and amplitude-
modulated holograms. The generated modes were captured by a high-resolution camera and analyzed
to evaluate the accuracy of the mode generation compared to theoretical expectations and numerical
simulations. The performance of each hologram type is assessed based on the fidelity of the generated
modes, the intensity distribution, and the corresponding fit parameters, providing insights into the
effectiveness of the holographic generation techniques in producing high-quality LG modes.

4.2.1 Phase-Only Method
Optimal Waist Determination

The optimal waist of the phase mask was experimentally determined by analyzing the 𝑅
2 values

for various waist sizes of the Laguerre-Gaussian (LG) modes. Figure 4.1 shows that the best waist
was found to be 65 pixels with an initial beam waist 𝑤0 = 280, resulting in a ratio of approximately
0.23. This is notably different from the simulation results, where a smaller range was analyzed due to
resolution limitations. This discrepancy highlights the impact of having a broader experimental range
without resolution constraints.

Experimental Diffraction Patterns

The experimentally generated first-order diffraction patterns for various LG modes using the phase-
only method are presented in Figure 4.2. While the modes are generally well-formed, they exhibit
noticeable distortions and ring structures, which deviate from the theoretically predicted patterns.
These imperfections suggest a discrepancy in mode purity and quality when compared to simulations.

Waist Measurements

Figure 4.3 illustrates the measured waists in the x and y directions for the generated LG modes. The
data indicates a lack of symmetry between the x and y waists, which deviates significantly from the
simulated results. The mean waist values are as follows:

• Mean 𝑤𝑥: 0.0005749 m, Variance 4.54 × 10−9 m2
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Figure 4.1: 𝑅2 Values for Different Phasemask Waists - Phase-Only Mode. The optimal waist of 65 pixels
corresponds to a ratio of approximately 0.23, which differs from the simulation results.

• Mean 𝑤𝑦: 0.0005292 m, Variance 4.31 × 10−9 m2

The increased variance compared to simulation suggests potential alignment and setup inaccuracies.

𝑹2 Values for Experimental Modes

The 𝑅
2 values, which quantify the mode purity, are depicted in Figure 4.4. The average 𝑅

2 value is
approximately 0.577, which is notably lower than the simulation results, highlighting the challenges in
achieving high fidelity with phase-only holograms in an experimental setup.

Mode Purity Analysis

Figures 4.5 and 4.6 show the mode purity (quantified as 𝑅2) for different LG modes and waist ratios.
Consistent with simulation observations, the optimal waist shifts slightly for different modes, and a
similar dependency on the waist ratio is observed. However, the experimental purity trends indicate
greater variability, suggesting practical limitations such as optical alignment, phase distortions, and
other experimental uncertainties.

4.2.2 Comparison of Amplitude Modulation Methods

The comparison between the simplified and exact amplitude modulation methods in the experimental
setup shows notable differences and similarities to the simulations. Below, we summarize the key
observations.
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Figure 4.2: Experimental First Order Diffraction Patterns for Various LG Modes using Phase-Only Method.
Distortions and ring structures are visible, indicating deviations from ideal mode formation.

Optimized Waist Values

Figures 4.7 and 4.8 display the dependency of 𝑅
2 values on different phasemask waists for both

methods. In the simplified method, the best waist is found at 𝑤 = 45 pixels, corresponding to a ratio
of approximately 0.16 when 𝑤0 = 280. For the exact method, the best waist is at 𝑤 = 50 pixels,
corresponding to a ratio of 0.18. These ratios differ from the simulation due to the broader range
examined in the experimental setup.

Generated Modes

As shown in Figures 4.9 and 4.10, the generated Laguerre-Gaussian modes from both methods
look visually consistent with the theoretical predictions, with no discernible differences between the
methods.
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Figure 4.3: Waist Measurements for Different LG Modes - Phase-Only Method. Significant discrepancies
between x and y waists are evident, indicating setup asymmetries.

Waist Discrepancy

The discrepancies between waists in the 𝑥 and 𝑦 directions are more prominent in the simplified
method compared to the exact method, as shown in Figures 4.11 and 4.12. Overall, both methods
exhibit larger discrepancies compared to simulations. For the simplified method:

Simplified method:

• Mean 𝑤𝑥: 0.0005537𝑚, Variance 𝑤𝑥: 2.87 × 10−11
𝑚

2

• Mean 𝑤𝑦: 0.0005367𝑚, Variance 𝑤𝑦: 2.26 × 10−11
𝑚

2

Exact method:

• Mean 𝑤𝑥: 0.0005329𝑚, Variance 𝑤𝑥: 4.97 × 10−11
𝑚

2

• Mean 𝑤𝑦: 0.0005105𝑚, Variance 𝑤𝑦: 2.32 × 10−11
𝑚

2

R-squared Values

The 𝑅
2 values across different modes are relatively consistent for both methods, with the simplified

method slightly underperforming compared to the exact method. The mean 𝑅
2 for the simplified

method is 0.8832, while for the exact method it is 0.9009, indicating a minor difference of about 0.2%,
slightly higher than the 0.1% observed in simulations.

4.3 Discussion and Comparison with Simulation
The experimental results for the generation of Laguerre-Gaussian (LG) modes using phase-only and
amplitude-modulated holograms reveal a range of observations that are both consistent with and
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Figure 4.4: 𝑅2 Values for Different Modes - Phase-Only Method. The average 𝑅
2 value of 0.577 is significantly

lower than simulated values, indicating reduced mode purity.

divergent from the numerical simulations. This discussion critically evaluates the findings, identifies
potential sources of discrepancies, and compares the fidelity of each method to the simulated results.

The determination of optimal waist values was a critical step in the generation process. For the
phase-only method, the optimal waist was found to be 65 pixels with an initial beam waist 𝑤0 = 280,
resulting in a ratio of approximately 0.23. This ratio differs notably from the simulation results, where
a smaller range was analyzed due to resolution limitations in the Fourier plane. This highlights the
impact of broader experimental exploration, unencumbered by the numerical constraints faced in
simulations. In the amplitude modulation methods, the optimized waists were found to be 45 pixels
(ratio of 0.16) for the simplified method and 50 pixels (ratio of 0.18) for the exact method, both of
which differ from simulated ratios. These differences can be attributed to the absence of the resolution
constraints present in the experimental setup, allowing for a more comprehensive exploration of
parameter space.

The generated diffraction patterns for both the phase-only and amplitude-modulated holograms
exhibit high visual quality, with the LG modes appearing generally well-formed. However, closer
inspection reveals specific deviations from ideal theoretical profiles. For the phase-only method, the
generated patterns showed significant ring structures and distortions that were not as prominent in
the simulations. These imperfections suggest that phase-only holograms may be more susceptible to
aberrations in the optical system, such as misalignment, phase errors introduced by the SLM, and
environmental instabilities. In contrast, both amplitude-modulated methods produced modes that
closely resembled theoretical expectations, with minimal observable differences between the exact
and simplified approaches. This indicates that amplitude modulation, especially in its exact form,
offers improved resilience to such distortions, making it a preferable choice for high-fidelity mode
generation.

Measurements of the waist sizes in the 𝑥 and 𝑦 directions revealed a notable lack of symmetry in
the experimental setup, particularly for the phase-only method, where the discrepancy between 𝑤𝑥
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Figure 4.5: Mode Purity for Different 𝑙 Values - Phase-Only Method. Variations in the optimal waist ratio for
different modes are observed, reflecting similar dependencies seen in simulations.

and 𝑤𝑦 was substantial. The variances in the measured waists were also higher than those observed
in simulations, reflecting the compounded effects of optical misalignments and SLM performance
inconsistencies. The amplitude modulation methods, particularly the exact approach, showed reduced
discrepancies between 𝑥 and 𝑦 waists compared to the simplified method. This suggests that the
exact amplitude modulation method maintains better control over mode symmetry, likely due to its
more precise hologram generation process, which inherently reduces the influence of experimental
imperfections.

The 𝑅
2 values provided a quantitative measure of the fidelity of the generated modes compared

to theoretical profiles. For the phase-only method, the mean 𝑅
2 value was approximately 0.577,

significantly lower than the values obtained in simulations, where 𝑅2 was 0.68. This substantial drop in
fidelity underscores the limitations of phase-only holograms in experimental conditions, highlighting
potential sources of error such as limited phase modulation depth, imperfections in the SLM surface,
and phase noise. In contrast, the amplitude modulation methods achieved mean 𝑅

2 values of 0.8832
for the simplified and 0.9009 for the exact approach. While these values are still below the near-perfect
fidelity observed in simulations, they represent a marked improvement over the phase-only results.
The slightly better performance of the exact method compared to the simplified approach suggests that
the additional complexity of exact amplitude modulation pays off in terms of generating higher quality
modes.

The mode purity analysis for the phase-only method revealed that the optimal waist shifted slightly
for different LG modes, consistent with simulation trends, but with greater variability in experimental
results. This variability points to the influence of practical limitations, such as optical misalignment,
phase distortions, and noise, which were not fully captured in the simulations. Unfortunately, the
mode purity data for the amplitude modulation methods were lost, preventing a direct comparison.
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Figure 4.6: Mode Purity for Different 𝑝 Values - Phase-Only Method. A similar trend of mode purity variation
as a function of waist ratio is seen, albeit with greater experimental variability.

However, based on the consistent trends observed in simulations, it can be reasonably inferred that
both amplitude methods would show similar dependencies on waist ratios, with the exact method
likely maintaining slightly higher purity due to its more precise modulation capabilities.

Overall, the experimental findings validate the simulations to a significant extent, confirming that
amplitude-modulated holograms, especially the exact approach, are highly effective for generating
Laguerre-Gaussian modes with high fidelity. The observed discrepancies between experimental and
simulated results underscore the importance of accounting for real-world imperfections when designing
and optimizing optical systems for mode generation. Sources of experimental error include SLM
imperfections, alignment inaccuracies, limited resolution of detection equipment, and environmental
fluctuations, all of which contribute to deviations from the idealized conditions assumed in simulations.
These insights are crucial for future refinements in experimental designs and underscore the need for
robust calibration and alignment procedures to minimize the impact of these error sources.

34



Figure 4.7: Mean 𝑅
2 values for different waists in the simplified amplitude modulation method. The optimal

waist is at 45 pixels.

Figure 4.8: Mean 𝑅
2 values for different waists in the exact amplitude modulation method. The optimal waist is

at 50 pixels.
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Figure 4.9: Experimental first-order diffraction patterns of various LG modes using the exact amplitude
modulation method with optimized waist 𝑤 = 50 pixels.
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Figure 4.10: Experimental first-order diffraction patterns of various LG modes using the simplified amplitude
modulation method with optimized waist 𝑤 = 45 pixels.
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Figure 4.11: Measured waists in the 𝑥 and 𝑦 directions for different modes using the simplified amplitude
modulation method.

Figure 4.12: Measured waists in the 𝑥 and 𝑦 directions for different modes using the exact amplitude modulation
method.
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Figure 4.13: 𝑅2 values for different modes using the simplified amplitude modulation method.

Figure 4.14: 𝑅2 values for different modes using the exact amplitude modulation method.
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CHAPTER 5

Conclusion and Outlook

This thesis presented a comprehensive study on the generation of Laguerre-Gaussian (LG) modes
using phase-only and amplitude-modulated holograms, both theoretically and experimentally. The
phase-only method and two variations of amplitude modulation—simplified and exact—were employed
to generate LG modes, and their performance was evaluated through a combination of simulations and
experimental measurements. The key findings of this research highlight the strengths and limitations
of each approach, with a particular focus on mode purity, symmetry, and overall fidelity.

The experimental results for the phase-only method revealed that while it is capable of generating LG
modes, the method suffers from significant distortions and variability in waist measurements compared
to the simulations. The observed ring structures and reduced 𝑅

2 values suggest that phase-only
holograms are more vulnerable to optical aberrations and setup imperfections. This highlights the
need for careful alignment and calibration when using phase-only techniques in practical applications.

In contrast, the amplitude-modulated methods demonstrated superior performance, with the exact
amplitude modulation approach achieving the highest fidelity and consistency. The exact method
maintained better control over mode symmetry and purity, with 𝑅

2 values close to those observed in
simulations. This indicates that the additional complexity of exact amplitude modulation is justified
for applications requiring high-quality mode generation. The simplified amplitude modulation method,
while slightly less accurate, still provided reliable results and offers a viable alternative when ease of
implementation and computational efficiency are prioritized.

The overall comparison between experimental and simulated data underscores the importance of
accounting for real-world imperfections such as SLM performance, alignment errors, and environmental
factors, which can significantly impact mode generation. These insights are crucial for refining
experimental designs and optimizing optical systems for future research and applications.

Looking ahead, there are several promising directions for further investigation. One potential area
of improvement involves enhancing the stability and calibration of the optical setup, particularly
for phase-only methods, to reduce alignment-induced errors and increase overall mode fidelity.
Additionally, exploring advanced SLM technologies with improved phase modulation capabilities
could help mitigate some of the performance limitations observed in the current study.

Further research could also extend the analysis to higher-order LG modes and other complex beam
shapes, allowing for a deeper understanding of the generation techniques and their limitations. In the
context of quantum optics, where precise control of light modes is critical, these advancements could
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facilitate more sophisticated experiments, such as the manipulation of photons with orbital angular
momentum in quantum communication and computation systems.

The integration of machine learning algorithms for real-time optimization and error correction in
mode generation presents another exciting opportunity. Such approaches could dynamically adjust the
hologram parameters to compensate for experimental imperfections, thereby enhancing the robustness
and adaptability of the mode generation process.

In summary, this work lays the groundwork for further development of holographic techniques
in generating high-quality optical modes. The insights gained here will be valuable not only for
fundamental research in optical physics but also for practical applications in fields such as quantum
optics, optical communication, and laser beam shaping.
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